Controlo externo da qualidade dos ensaios

- 5.7 Participação em testes de aptidão (PT)
- 5.8 Análise de Materiais de Referência Certificados (MRC)

Controlo externo da qualidade dos ensaios

5.7 Participação em testes de aptidão

Ensaios/Testes de Aptidão (PT- Proficienty tests)

"Avaliação do desempenho de uma participação relativamente a critérios preestabelecidos por comparações interlaboratoriais" (ISO/IEC 17043, § 3.7)

A participação em testes de aptidão (PT) permite um controlo mais transparente da qualidade do desempenho do laboratório.

Porquê participar num PT?

- Para demonstrar a sua competência
 - √ 'a si próprio' (no seu laboratório)
 - ✓ ao seu cliente direto
 - ✓ a terceiros (ex. acreditação)
- Para melhorar competências de medição (aspeto educativo)
- Para estar de acordo com a ISO/IEC 17025 § 5.9:

"O laboratório deverá ter procedimentos de controlo da qualidade para monitorizar a validade dos ensaios. Esta monitorização deverá ser planeada e revista e poderá incluir ...b) participação em programas de comparação interlaboratorial ou ensaios de aptidão"

Ciências ULisboa

www.eptis.bam.de

(Sistema Europeu de informação de programas de Ensaios de Aptidão)

Controlo externo da qualidade dos ensaios

5.7 Participação em testes de aptidão

Quem organiza os PT?

- Organizações Internacionais
- Institutos Nacionais de Metrologia
- Fornecedores Comerciais
- Outros

Como se organiza um PT?

I - Planeamento Definir objetivos/finalidade; Selecionar organizador, amostra/matriz & mensuranda/analito, fornecedor do material; Preparar o material a ensaiar; Testar a homogeneidade e estabilidade; *Definir o valor de referência e sua incerteza;* Selecionar os participantes

II – Execução Distribuição das amostras pelos participantes; Análise das amostras e Comunicação dos resultados ao organizador

Controlo externo da qualidade dos ensaios

5.7 Participação em testes de aptidão

Como se organiza um PT?

III – Avaliação

Avaliação dos resultados

- Atribuição do valor consensual caso nenhum valor de referência tenha sido atribuído na fase I
- Comunicação dos resultados pelo organizador aos participantes

Conclusões – Podem levar à implementação de acções correctivas

Como avaliar a qualidade de um PT ? O documento base é a ISO 17043.

Controlo externo da qualidade dos ensaios

5.7 Participação em testes de aptidão

5.7.1 Selecção de testes de aptidão

A selecção dos testes de aptidão deve ter em conta, pelo menos, os seguintes factores:

- 1) Equivalência dos itens caracterizados no PT em relação à amostras analisadas no laboratório (matriz, concentrações, técnica)
- 2) Metodologia usada para a definição do "Valor de referência", V_{Ref.}, do PT
- 3) Metodologia usada para o cálculo da pontuação do laboratório.

Controlo externo da qualidade dos ensaios

5.7 Participação em testes de aptidão

5.7.2 Definição do valor de referência do PT

- i) Medição por um laboratório de referência
- + frequente
- ii) Valor certificado de um MRC usado no PT
- iii) Comparação directa entre o material do PT com um MRC
- iv) Valor consensual de laboratórios com competência comprovada
- v) Formulação (ex. adição de quantidade conhecida de analito a tomas "sem" analito)
- vi) Valor consensual de todos os participantes

Controlo externo da qualidade dos ensaios

5.7 Participação em testes de aptidão

5.7.3 Cálculo da pontuação do laboratório

• Habitualmente considera-se o "z-score", z:

$$z = \frac{x_i - V_{ref.}}{\sigma_P}$$

Em que

 x_i – estimativa do laboratório; $V_{ref.}$ – valor de referência do PT;

 σ_P – desvio padrão de referência.

 σ_P – é o desvio padrão dos participantes ou um desvio definido considerando o objectivo do ensaio ("fit-for-purpose").

Controlo externo da qualidade dos ensaios

5.7 Participação em testes de aptidão

5.7.3 Cálculo da pontuação do laboratório

- Como se interpreta o "z-score":
- z = 0: medição perfeita (rara!)
- > z = [-2; 2] ou |z| ≤ 2: 95 % dos resultados \Rightarrow resultados designados como "aceitáveis" ou "satisfatórios"
- >|z|> 3: pouco provável em condições de controlo estatístico \Rightarrow resultados designados como "inaceitáveis" ou "insatisfatórios" que carecem de investigação
- |z| =]2, 3]: ocorrem em cerca de 1 em cada 20 casos (com alguma probabilidade de ocorrência) \rightarrow resultados designados como "questionáveis".

Mesmo os desempenhos insatisfatórios podem ser úteis; se aprender com eles pode melhorar

Controlo externo da qualidade dos ensaios

5.7 Participação em testes de aptidão

5.7.3 Cálculo da pontuação do laboratório

- Vantagens do "z-score":
- Os critérios são os mesmos independentemente da medição → desempenho em diferentes medições pode ser comparado.
- Resultados actuais podem ser directamente comparados com resultados anteriores.
- Desvantagem:
- Não é tida em conta a incerteza.

Controlo externo da qualidade dos ensaios

5.7 Participação em testes de aptidão

5.7.4 Cálculo da pontuação do laboratório quando é reportada a incerteza do participante

O cálculo do "z-score" permite avaliar a adequação da incerteza da medição efectuada. No entanto, não permite avaliar a qualidade da percepção desta incerteza por parte do laboratório.

5.7.4.1 O "zeta-score"

A ISO 13528:2005 define o "ζ-score" como:

$$\zeta = \frac{x_i - V_{ref.}}{\sqrt{u(x_i)^2 + u(V_{ref.})^2}}$$
 Incertezas padrão

 \triangleright z e ζ são interpretados da mesma forma (i.e., $|\zeta|>3$ devem ser investigados).

Controlo externo da qualidade dos ensaios

5.7 Participação em testes de aptidão

5.7.4 Cálculo da pontuação do laboratório quando é reportada a incerteza do participante

 ζ elevados podem ser causados por erros grandes ou $u(x_i)$ subestimadas.

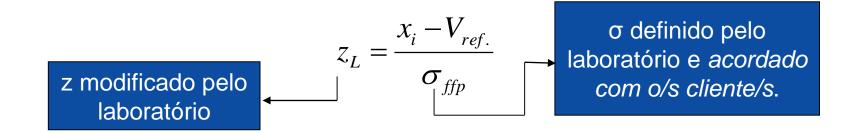
Convém calcular o "z-score" juntamente com o "ζ-score" para o primeiro ser usado para despistar erros grandes.

5.7.4.2 O "En-score":

O "En-score" é calculado com base em incertezas expandidas:

$$En = \frac{\left|x_{i} - V_{ref.}\right|}{\sqrt{U(x_{i})^{2} + U(V_{ref.})^{2}}}$$
 Incertezas expandidas

En > 1 devem ser investigados
En controla a qualidade do factor de expansão



Controlo externo da qualidade dos ensaios

5.7 Participação em testes de aptidão

5.7.5 Z-score modificado considerando requisitos individuais

Quando o laboratório não concorda com o σ_P definido pelo promotor, deve calcular um "z-score" modificado z_l :

- z e z_L são interpretados da mesma forma...
- \triangleright O laboratório pode definir diferentes σ_{ffp} e z_L para diferentes aplicações e clientes.

Controlo externo da qualidade dos ensaios

5.7 Participação em testes de aptidão

5.7.6 Acompanhamento de tendências na participação em PT

O laboratório pode acompanhar a evolução do seu desempenho em PT construindo carta de controlo com os "z-scores" (...)

Acompanhar as tendências seguindo as regras das carta de controlo de indivíduos em que as linhas de aviso são "± 2" e as linhas de controlo são "± 3".

- ✓ NÃO TRATAR a amostra do PT como uma amostra "ESPECIAL"
- ✓ Respeitar o protocolo de participação
- ✓ Usar os procedimentos de rotina
- ✓ Dar ênfase ao aspeto educacional
- ✓ Usar diferentes operadores
- ✓ Desempenho insatisfatório…conduz a acções corretivas

